Geometría problemas resueltos de secundaria y pre universidad

COORDENADAS CARTESIANAS BIDIMENSIONALES GEOMETRIA ANALÍTICA TEORÍA DE MATEMÁTICAS DE SECUNDARIA Y PREUNIVERSITARIA pdf

SISTEMA BIDIMENSIONAL A partir del concepto de un sistema unidimensional se puede establecer una correspondencia biunívoca entre los puntos de un plano y pares ordenados de números reales. Lo cual permite denominar lo que es el PLANO CARTESIANO que es un sistema formado por dos rectas numéricas las cuales se cortan perpendicularmente en sus orígenes y dicha intersección será el origen de coordenadas. A la recta HORIZONTAL se le conoce como EJE DE ABCISAS (X), mientras que a la recta VERTICAL se le denomina EJE DE ORDENADAS (Y). UBICACIÓN DE UN PUNTO La ubicación de un punto en el plano cartesiano se representa mediante un par ordenado (x;y); en donde a este punto se conoce como “Coordenadas del Punto”. Entonces: a x se le denomina Abcisa del punto P. a y se le denomina Ordenada del punto P. RADIO VECTOR (r) : A la distancia de un punto del plano cartesiano al origen se llama RADIO VECTOR (r) y se le considera positivo. DISTANCIA ENTRE DOS PUNTOS(Sistema Bidimensional) DIVISIÓN DE UN SEGMENTO EN UNA RAZÓN DADA PUNTO MEDIO DE UN SEGMENTO Si: M(x ; y) es el punto medio del segmento que tiene por extremos: P1 (x1 ; y1) y P2 (x2 ; y2), entonces se tiene: COORDENADAS DEL BARICENTRO DE UN TRIANGULO Seanlas coordenadas de los vértices de un triángulo y sea G(x;y) las coordenadas del baricentro del triángulo, entonces: ÁREA DE UNA REGIÓN TRIANGULAR: Sean P1 (x1 ; y1); P2 (x2 ; y2) y P3 (x3 ; y3) los vértices de un triángulo. Entonces el área S de una región triangular en función de las coordenadas de los vértices será igual a: El mismo procedimiento se puede aplicar al área de una región poligonal. ÁREA DE UN POLÍGONO DE “n” VÉRTICES A(x1;y1), B(x2;y2), C(x3;y3), ..., (xn;yn) Se toma un punto cualquiera y luego se sigue en sentido antihorario hasta llegar al punto original. Ejemplo : Hallar el área del cuadrilátero que tiene los vértices consecutivos : A(3,5) ; B(2,1) ; C(8,3) ; D(7,7) RESOLUCIÓN :

GEOMETRIA EJERCICIOS RESUELTOS

SI DESEAS OTRO TEMA BUSCAR AQUÍ

Related Posts Plugin for WordPress, Blogger...