GEOMETRÍA ADMISIÓN CATÓLICA PUCP 2022 2023 EXAMEN INGRESO A LA UNIVERSIDAD SOLUCIONARIO PDF

PREGUNTA 21 : 
Se tiene un triángulo ABC, mA=60°, AB=2 cm y AC=5 cm. Calcula BC. 
A) 21 
B) 17 
C) 19 
D) 2
RESOLUCIÓN :
Rpta. : "C"
PREGUNTA 22 : 
Se tienen cuatro ángulos consecutivos AOB, BOC, COD y DOE tal que A, O, E son colineales, se sabe que los cuatro ángulos se encuentran en progresión aritmética y además la medida del ángulo mayor es el doble de la medida del ángulo menor. Calcule la diferencia de los dos ángulos intermedios en medida. 
A) 5º 
B) 8º 
C) 10º 
D) 12º 
RESOLUCIÓN :
Rpta. : "C"
PREGUNTA 23 : 
De la figura mostrada, MN//BC, AB=4 y BC=6. 
Calcula BM. 
A) 1,2 
B) 1,8 
C) 2,4 
D) 3 
RESOLUCIÓN :
Rpta. : "C"
PREGUNTA 24 : 
En una recta se tienen los puntos consecutivos A, B y C. Se construye el triángulo equilátero BEC, si AC=223 . Calcula AE 
A) 22 
B) 33 
C) 42 
D) 20 
RESOLUCIÓN :
Rpta. : "B"
PREGUNTA 25 : 
En el gráfico, el perímetro de la región sombreada es (24+3π). Calcula el área de su región si ABCD es un rectángulo. 
RESOLUCIÓN :
Rpta. : "D"
PREGUNTA 26 : 
En el gráfico, calcula el área de la región sombreada. 
RESOLUCIÓN :
Rpta. : "A"
PREGUNTA 27 : 
En un cuadrado ABCD, si la intersección entre AC y BM es N; AM=MD y la distancia de N a AM es 20 u. 
Calcula el área de la región cuadrada ABCD. 
A) 1800 m² 
B) 3600 m² 
C) 4800 m² 
D) 2700 m² 
RESOLUCIÓN :
Rpta. : "B"
PREGUNTA 28 : 
Se gira una región rectangular de área 10 u², en torno a uno de sus lados, cuya longitud es 2 u. Calcula el área de la superficie lateral del cilindro y su volumen. 
A) 20π u² y 20π u³ 
B) 20π u² y 24π u³ 
C) 24π u² y 20π u³ 
D) 18π u² y 20π u³ 
RESOLUCIÓN :
Rpta. : "A"
PREGUNTA 29 :
En un cono de 8 cm de altura y de radio 5, calcule la generatriz del cilindro inscrito en el cono si el área lateral del cilindro es 20π u².
A) 2 
B) 4 
C) 6 
D) 8 
RESOLUCIÓN :
Rpta. : "B" 
PREGUNTA 30 : 
Se tiene una semicircunferencia de diámetro AB y de radio 4. Calcula x+y. 
A) 32 ( 3 + 5 ) 
B) 23 ( 2 + 5 ) 
C) 22 ( 3 + 5 ) 
D) 2(3 + 5 ) 
RESOLUCIÓN :
Rpta. : "C"
PREGUNTA 31 : 
Se tiene un cuadrado ABCD, se construye externamente un triángulo rectángulo AEB. Si EB=14 y AE=10, calcula ED. 
A) 26 
B) 24 
C) 25 
D) 21 
RESOLUCIÓN :
Rpta. : "A"

PREGUNTA 32 : 
Se tiene un paralelogramo ABCD, de modo que AB=12 y BC=5; se traza la bisectriz interior AE (E en DC). Si el área de la región paralelográmica es 48 u², calcula el área de la región AECB. 
A) 44 u² 
B) 28 u² 
C) 36 u² 
D) 38 u² 
RESOLUCIÓN :
Rpta. : "D"
PREGUNTA 33 : 
En un triángulo rectángulo ABC recto en B. Si M es punto medio de AB y N∈BC, tal que MN es paralela a AC; AN=22 y MC=19. Calcula AC. 
A) 21 
B) 24 
C) 25 
D) 26 
RESOLUCIÓN :
Rpta. : "D"
PREGUNTA 34 : 
En el gráfico, calcula “x”. 
A) 82° 
B) 76° 
C) 75° 
D) 81° 
RESOLUCIÓN :
Rpta. : "C"
PREGUNTA 35 : 
Se tiene un triángulo equilátero ABC de lado 12, MN//AC . Si AM=10. 
Calcula el área de la región del triángulo ABN. 
A) 3
B) 6
C) 4
D) 5
RESOLUCIÓN :
Rpta. : "B"
PREGUNTA 36 : 
Se tiene una semicircunferencia de centro O, calcula “x” (T; P: puntos de tangencia). 
A) 37° 
B) 53° 
C) 30° 
D) 45° 
RESOLUCIÓN :
Rpta. : "D"

Exámenes desarrollados de secundaria y preuniversitarios